domingo, 10 de junio de 2012

ÁTOMOS Y NÚMEROS CUÁNTICOS



En química y física, átomo (del latín atomum, y éste del griego τομον, sin partes; también, se deriva de "a" no, y "tomo" divisible; no divisible)[1] es la unidad más pequeña de un elemento químico que mantiene su identidad o sus propiedades, y que no es posible dividir mediante procesos químicos.
Su denso núcleo representan el 99.9% de la masa del átomo, y está compuesto de bariones llamados protones y neutrones, rodeados por una nube de electrones, que -en un átomo neutro- igualan el número de protones.
A pesar de que "átomo" significa "indivisible", hoy día se sabe que el átomo está formado por partículas más pequeñas, las llamadas partículas subatómicas.
El núcleo del átomo es su parte central. Tiene carga positiva, y en él se concentra casi toda la masa del mismo. Sin embargo, ocupa una fracción muy pequeña del volumen del átomo: su radio es unas diez mil veces más pequeño. El núcleo está formado por protones y neutrones.
Alrededor del núcleo se encuentran los electrones, partículas de carga negativa y masa muy pequeña comparada con la de los protones y neutrones: un 0,05% aproximadamente. Los electrones se encuentran alrededor del núcleo, ligados por la fuerza electromagnética que éste ejerce sobre ellos, y ocupando la mayor parte del tamaño del átomo, en la llamada nube de electrones.
El núcleo del átomo se encuentra formado por nucleones, los cuales pueden ser de dos clases:
Protones: una partícula con carga eléctrica positiva igual a una carga elemental, y una masa de 1,67262 × 10–27 kg.
Neutrones: partículas carentes de carga eléctrica, y con una masa un poco mayor que la del protón (1,67493 × 10–27 kg).
Los números cuánticos son unos números que se conservan en los sistemas cuánticos. Así, los números cuánticos permiten caracterizar los estados estacionarios, es decir los estados propios del sistema.
En física atómica, los números cuánticos son valores numéricos discretos que nos indican las características de los electrones en los átomos, esto está basado en la teoría atómica de Niels Bohr que es el modelo atómico más aceptado y utilizado en los últimos tiempos por su simplicidad.
En física de partículas también se emplea el término números cuánticos para designar a los posibles valores de ciertos observables o magnitud física que poseen un espectro o rango posible de valores discreto.
Los números que caracterizan los estados propios estacionarios de un electrón de un átomo hidrogenoide y que, por tanto, describen los orbitales atómicos. Estos números cuánticos son:
El número cuántico principal (n) determina el tamaño de las órbitas, por tanto, la distancia al núcleo de un electrón vendrá determinada por este número cuántico. Todas las órbitas con el mismo número cuántico principal forman una capa. Su valor puede ser cualquier número natural mayor que 0 (1, 2, 3...) y dependiendo de su valor, cada capa recibe como designación una letra. Si el número cuántico principal es 1, la capa se denomina K, si 2 L, si 3 M, si 4 N, si 5 P, etc.
II) El número cuántico del momento angular o azimutal (l = 0,1,2,3,4,5,...,n-1), indica la forma de los orbitales y el subnivel de energía en el que se encuentra el electrón. Un orbital de un átomo hidrogenoide tiene l nodos angulares y n-1-l nodos radiales.
Si:l = 0: Subórbita "s" ("forma circular") →s proviene de sharp (nitido) (*)
l = 1: Subórbita "p" ("forma semicircular achatada") →p proviene de principal (*)
l = 2: Subórbita "d" ("forma lobular, con anillo nodal") →d proviene de difuse (difuso) (*)
l = 3: Subórbita "f" ("lobulares con nodos radiales") →f proviene de fundamental (*)
l = 4: Subórbita "g" (*)
l = 5: Subórbita "h" (*)
III) El número cuántico magnético (m, ml), determina la orientación espacial de las órbitas, de las elipses. Su valor dependerá del número de elipses existente y varía desde -l hasta l, pasando por el valor 0. Así, si el valor de l es 2, las órbitas podrán tener 5 orientaciones en el espacio, con los valores de m -2, -1, 0, 1 y 2. Si el número cuántico azimutal es 1, existen tres orientaciones posible (-1, 0 y 1), mientras que si es 0, sólo hay una posible orientación espacial, correspondiente al valor de m 0.



El conjunto de estos tres números cuánticos determinan la forma y orientación de la órbita que describe el electrón y que se denomina orbital. Según el número cuántico azimutal (l), el orbital recibe un nombre distinto. cuando l = 0, se llama orbital s; si vale 1, se denomina orbital p, cuando 2 d, si su valor es 3, se denomina orbital f, si 4 g, y así sucesivamente.
Pero no todas las capa tienen el mismo número de orbitales, el número de orbitales depende de la capa y, por tanto, del número cuántico n. Así, en la capa K, como n = 1, l sólo puede tomar el valor 0 (desde 0 hasta n-1, que es 0) y mtambién valdrá 0 (su valor varía desde -l hasta l, que en este caso valen ambos 0), así que sólo hay un orbital s, de valores de números cuánticos (1,0,0).
En la capa M, en la que n toma el valor 3. El valor de l puede ser 0, 1 y 2. En el primer caso (l = 0), m tomará el valor 0, habrá un orbital s; en el segundo caso (l = 1), m podrá tomar los valores -1, 0 y 1 y existirán 3 orbitales p; en el caso final (l = 2) m tomará los valores -2, -1, 0, 1 y 2, por lo que hay 5 orbitales d. En general, habrá en cada capa n2 orbitales, el primero s, 3 serán p, 5 d, 7 f, etc.




RELATIVIDAD

La teoria de la relatividad
En 1906 el físico Albert Einstein (1879 - 1955) formuló la Teoría de la Relatividad Especial







¿Qué dice la teoría de la Relatividad Especial?


La Relatividad Especial toma el hecho de la constancia de la velocidad de la luz como condición básica para la construcción de la teoría. 
Además, Einstein introduce otro elemento: 









La coordenada del tiempo se debe tratar simplemente como una coordenada más del espacio.


Las consecuencias de esta teoría son inimaginables:
  • Un intervalo de tiempo medido en tierra no es igual al mismo intervalo medido desde un móvil 
  • Una distancia medida en tierra no es igual a la misma distancia medida desde un móvil 
  • La masa y la energía son conceptos equivalentes. La masa puede convertirse en otras formas de energía (como, por ejemplo, ondas de luz) y al contrario. De aquí sale la famosa fórmula

E = mc2
 
(E = energía,   m = masa,   c = velocidad de la luz) 





¿Qué dice la teoría de la Relatividad General?


  • La gravedad (o atracción entre cuerpos con masa) es consecuencia de la forma del espacio. 
  • La fuerza que sentimos cuando nos movemos en un sistema acelerado (por ejemplo cuando la buseta frena) tiene la misma naturaleza que la fuerza de atracción entre masas (por ejemplo la fuerza de gravedad que ejerce la Tierra sobre la Luna).
Una forma muy compacta de expresar el punto central de la Teoría de la Relatividad General es diciendo que 
 
la gravedad es equivalente a la curvatura del espacio.


PREDECIBILIDAD Y CAOS

TEORIA DEL CAOS

Con un aleteo, una mariposa que vuele en China puede provocar un tornado en Nueva York... En efecto, cada movimiento, por ínfimo que sea, provoca una cascada de consecuencias imprevisibles... ComO especie llamada superior, el Hombre es el mayor propagador de caos.


LA TEORIA DEL CAOS Tiene como principal representante al químico belga Ilya Prigogine, y plantea que el mundo no sigue estrictamente el modelo del reloj, previsible y determinado, sino que tiene aspectos caóticos. El observador no es quien crea la inestabilidad o la imprevisibilidad con su ignorancia: ellas existen de por sí, y un ejemplo típico el clima. Los procesos de la realidad dependen de un enorme conjunto de circunstancias inciertas, que determinan por ejemplo que cualquier pequeña variación en un punto del planeta, genere en los próximos días o semanas un efecto considerable en el otro extremo de la tierra. La idea de caos en la psicología y en el lenguaje.

1. Efecto mariposa y caos matemático.- Empezaremos con la parte anecdótica de la teoría del caos, el famoso "efecto mariposa" Es decir, comenzaremos a investigar el iceberg a partir de su punta visible que, como sabemos, es apenas una mínima fracción del total.
En principio, las relaciones entre causas y efectos pueden examinarse desde dos puntos de vista: cualitativo y cuantitativo. Desde la primera perspectiva, las relaciones causa-efecto pueden ser concebidas de varias maneras: a) como vínculos unidireccionales: A causa B, B causa C, etc., pero los efectos resultantes no vuelven a ejercer influencia sobre sus causas originales; b) como eventos independientes: según esta concepción, no habría ni causas ni efectos: cada acontecimiento ocurriría al azar e independientemente de los otros; c) como vínculos circulares: A causa B, y B a su vez causa A, es decir, el efecto influye a su vez sobre la causa, como resultado de los cual ambos acontecimientos son a la vez causas y efectos. Se trata de los llamados circuitos de retroalimentación, que pueden ser negativos o positivos.


La teoría del caos, en la medida en que considera que existen procesos aleatorios, adopta la postura (b), pero en la medida en que dice que ciertos otros procesos no son caóticos sino ordenados, sostiene que sí, que existen vínculos causales. Los vínculos causales que más desarrollará son los circuitos de retroalimentación positiva, es decir, aquellos donde se verifica una amplificación de las desviaciones: por ejemplo, una pequeña causa inicial, mediante un proceso amplificador, podrá generar un efecto considerablemente grande. No nos alarmemos. Esto lo iremos aclarando poco a poco.

2. Causa-efecto: relaciones cuantitativas.- Si examinamos las posibles relaciones cuantitativas que pueden existir entre causas y efectos, las alternativas podrían ser las siguientes:


1) Causas y efectos son razonablemente proporcionales: pequeñas causas producen pequeños efectos, y grandes causas grandes efectos (como cuando decimos que, dentro de cierto espectro de variabilidad, cuanto mayor es la frustración mayor será la respuesta agresiva, siendo ambas variaciones razonablemente proporcionales);

2) Una causa pequeña produce un gran efecto (como cuando un comentario intrascendente desata una crisis psicótica);

3) Una causa grande produce un pequeño efecto (como cuando una interpretación nuclear que apunte directamente al conflicto patógeno infantil, genera una respuesta indiferente en el paciente).
Los seres humanos tendemos inevitablemente a creer en alguno de estos supuestos en la vida cotidiana, y por motivos muy diversos. Detrás de toda creencia hay un deseo, que es quien le da su intensidad, su persistencia, su razón de ser. Así, la creencia en una desproporción causa-efecto del caso 2 oculta un deseo de poder: la ilusión de que con muy poco se puede lograr mucho.

3. Causas pequeñas, grandes efectos.-

El sentido común prescribe una cierta proporción entre la causa y el efecto: una fuerza pequeña produce un movimiento pequeño, y una fuerza grande, un gran desplazamiento. El psicoanálisis invoca la misma idea para justificar la idea de que una terapia breve produce pequeños cambios, y de que un tratamiento prolongado 



























RADIACTIVIDAD


La radiactividad no es nada nuevo. Existe desde que se formó la Tierra hace 4500 millones de años. No se puede percibir por el olfato, el gusto, el tacto, el oído ni la vista. Sólo en los últimos años se ha aprendido a detectarla, medirla y controlarla.
Al contrario de la creencia popular, la radiación no sólo la produce la industria nuclear o las armas nucleares. En efecto, un 87% de la dosis de radiación que recibimos proviene de fuentes naturales. La radiación está en todas partes: en los hogares, en el aire que se respira, en los alimentos que se ingieren; incluso el cuerpo es radiactivo. La propia Tierra es radiactiva por naturaleza y expone a los habitantes a la radiación proveniente de las rocas superficiales y los suelos.
El resto de la radiación proviene de las actividades humanas. La fuente más conocida y más amplia es la aplicación médica. Innumerables son los beneficios que reporta el uso de la radiación en el diagnóstico y el tratamiento de enfermedades. Con ella se ha podido realizar exploraciones del cerebro y los huesos, tratar el cáncer y usar elementos radiactivos para dar seguimiento a hormonas y otros compuestos químicos de los organismos.
Probablemente sea menos conocida la función que desempeña la radiación en la industria, la agricultura y la investigación. La inspección de soldaduras, la detección de grietas en metal forjado o fundido, el alumbrado de emergencia, la datación de antigüedades y la preservación de alimentos son algunas de sus numerosas aplicaciones.
En promedio, la industria nuclear representa menos del 0,1% de la radiación total que el hombre recibe.
Cuando se viaja en avión, se expone a recibir una radiación mayor, ya que hay menos protección contra los rayos cósmicos. Un pasajero que viaje en avión a una altitud normal recibe en una hora, una dosis de radiación cuatro veces mayor, que la que recibe de toda la industria nuclear en un año.
La radiactividad puede ser peligrosa en determinadas circunstancias y sus riesgos no deben tomarse a la ligera. Puede dañar las células del organismo y la exposición a altos niveles, puede ser nociva e incluso fatal si se trata de manera inadecuada, por eso lleva un largo proceso de investigación y descubrimientos abriéndose las puertas de la era nuclear.
SÍMBOLO RADIACTIVO





NÚCLEO ATÓMICO

El núcleo atómico es la parte central de un átomo, tiene carga positiva, y concentra más del 99,9% de la masa total del átomo.
Está formado por protones y neutrones (denominados nucleones) que se mantienen unidos por medio de la interacción nuclear fuerte, la cual permite que el núcleo sea estable, a pesar de que los protones se repelen entre sí (como los polos iguales de dos imanes). La cantidad de protones en el núcleo determina el elemento químico al que pertenece. Los núcleos atómicos con el mismo número de protones, pero distinto número de neutrones, se denominanisótopos; por esta razón, átomos de un mismo elemento pueden tener masas diferentes.
La existencia del núcleo atómico fue deducida del experimento de Rutherford, donde se bombardeó una lámina fina de oro con partículas alfa, que son núcleos atómicos de helio emitidos por rocas radiactivas. La mayoría de esas partículas traspasaban la lámina, pero algunas rebotaban, lo cual demostró la existencia de un minúsculo núcleo atómico.


FUSIÓN NUCLEAR


La fusión nuclear es una reacción nuclear en la que dos núcleos de átomos ligeros, en general el hidrógeno y sus isótopos (deuterio y tritio), se unen para formar otro núcleo más pesado, liberando una gran cantidad de energía.
Un ejemplo claro lo vemos a diario en la energía solar que tiene su origen en la fusión de núcleos de hidrógeno, generándose helio y liberándose una gran cantidad de energía que llega a la Tierra en forma de radiación electromagnética.
Para efectuar las reacciones de fusión nuclear, se deben cumplir los siguientes requisitos:
  • Temperatura muy elevada para separar los electrones del núcleo y que éste se aproxime a otro venciendo las fuerzas de repulsión electrostáticas. La masa gaseosa compuesta por electrones libres y átomos altamente ionizados se denomina PLASMA.
  • Confinamiento necesario para mantener el plasma a elevada temperatura durante un tiempo mínimo.
  • Densidad del plasma suficiente para que los núcleos estén cerca unos de otros y puedan lugar a reacciones de fusión.
Los confinamientos convencionales, como las paredes de una vasija, no son factibles debido a las altas temperaturas del plasma. Por este motivo, se encuentran en desarrollo dos métodos de confinamiento:
  • Fusión nuclear por confinamiento inercial (FCI): Consiste en crear un medio tan denso que las partículas no tengan casi ninguna posibilidad de escapar sin chocar entre sí. Una pequeña esfera compuesta por deuterio y tritio es impactada por un haz de láser, provocándose su implosión. Así, se hace cientos de veces más densa y explosiona bajo los efectos de la reacción de fusión nuclear.
  • Fusión nuclear por confinamiento magnético (FCM): Las partículas eléctricamente cargadas del plasma son atrapadas en un espacio reducido por la acción de un campo magnético. El dispositivo más desarrollado tiene forma toroidal y se denomina TOKAMAK.
VENTAJAS DE LA FUSIÓN NUCLEAR
Entre las ventajas de este dispositivo pueden citarse las siguientes:
  • La fusión nuclear es una energía limpia ya que no produce gases nocivos y genera residuos nucleares de muy baja actividad.
  • Un reactor de fusión nuclear es intrínsecamente seguro ya que la propia reacción se detiene al cortar el suministro de combustible. No depende de ningún sistema externo de seguridad susceptible de errores.
  • Es una fuente inagotable de energía ya que el Deuterio existe en abundancia en la naturaleza y el Tritio es generado dentro del propio reactor a partir del Deuterio.

FISIÓN NUCLEAR



La fisión nuclear és una de las dos reacciones posibles que se producen cuando trabajamos con energía nuclear.
En energía nuclear llamamos fisión nuclear a la división del núcleo de un átomo. El núcleo se convierte en diversos fragmentos con una masa casi igual a la mitad de la masa original más dos o tres neutrones.

La suma de las masas de estos fragmentos es menor que la masa original. Esta 'falta' de masas (alrededor del 0,1 por ciento de la masa original) se ha convertido en energía según la ecuación de Einstein (E=mc2). En esta ecuación E corresponde a la energía obtenida, m a la masa de la que hablamos y c és una constante, la de la velocidad de la luz: 299.792.458 m/s2. Con este valor de la constante c ya se puede ver que por poca unidad de masa que extraigamos en una fisión nuclear obtendremos grandes cantidades de energía.
La fisión nuclear puede ocurrir cuando un núcleo de un átomo pesado captura un neutrón, o puede ocurrir espontáneamente.


CADENA DE REACCIONES NUCLEARES

Una reacción en cadena se refiere a un proceso en el que los neutrones liberados en la fisión produce una fisión adicional en al menos un núcleo más. Este núcleo, a su vez produce neutrones, y el proceso se repite. El proceso puede ser controlado (energía nuclear) o incontrolada (armas nucleares).


Si en cada fisión provocada por un neutrón se liberan dos neutrones más, entonces el número de fisiones se duplica en cada generación. En este caso, en 10 generaciones hay 1.024 fisiones y en 80 generaciones aproximadamente 6 x 1023 fisiones.
ENERGÍA LIBERADA POR CADA FISIÓN NUCLEAR
165 MeV ~ Energía cinética de los productos de fisión
7 MeV ~ Rayos gamma
6 MeV ~ Energía cinética de los neutrones
7 MeV ~ Energía a partir de productos de fisión
6 MeV ~ Rayos gama de productos de fisión
9 MeV ~ Anti-neutrinos de los productos de fisión
200 MeV
1 MeV (millones de electrón-voltios) = 1,609 x 10-13 Joules



jueves, 26 de abril de 2012

LUZ


¿Qué es la luz?
La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética.


La LUZ es la radiación visible del espectro electromagnético que podemos captar con nuestros ojos.




La luz presenta tres propiedades características

Se propaga en línea recta.
Se refleja cuando llega a una superficie reflectante.
Cambia de dirección cuando pasa de un medio a otro (se refracta).




                                    REFLEXIÓN

La reflexión de la luz se representa por medio de dos rayos: el que llega a una superficie, rayo incidente, y el que sale "rebotado" después de reflejarse, rayo reflejado.
Si se traza una recta perpendicular a la superficie (que se denomina normal), el rayo incidente forma un ángulo con dicha recta, que se llama ángulo de incidencia


La reflexión de la luz es el cambio de dirección que experimenta un rayo luminosos al chocar contra la superficie de los cuerpos. La luz reflejada sigue propagándose por el mismo medio que la incidente.
La reflexión de la luz cumple dos leyes:
- El rayo incidente, el reflejado y la normal están en un mismo plano perpendicular a la superficie.
- El ángulo de incidencia es igual al ángulo de reflexión.





Existen dos tipos de reflexión de la luz: reflexión especular y reflexión difusa.
Reflexión especular: La superficie donde se refleja la luz es perfectamente lisa (espejos, agua en calma) y todos los rayos reflejados salen en la misma dirección.

Reflexión difusa: La superficie presenta rugosidades. Los rayos salen reflejados en todas las direcciones. Podemos percibir los objetos y sus formas gracias a la reflexión difusa de la luz en su superficie.


ESPEJOS

Un espejo es una superficie pulida en la que al incidir la luz , se refleja siguiendo las leyes de la reflexión.
El ejemplo más sencillo es el espejo plano. En este último, un haz de rayos de luz paralelos puede cambiar de dirección completamente en conjunto y continuar siendo un haz de rayos paralelos, pudiendo producir así una imagen virtual de un objeto con el mismo tamaño y forma que el real. La imagen resulta derecha pero invertida en el eje normal al espejo.
También existen espejos cóncavos y espejos convexos. En un espejo cóncavo cuya superficie forma un paraboloide de revolución, todos los rayos que inciden paralelos al eje del espejo, se reflejan pasando por el foco, y los que inciden pasando por el foco, se reflejan paralelos al eje.
Los espejos son objetos que reflejan casi toda la luz que choca contra su superficie debido a este fenómeno podemos observar nuestra imagen en ellos.

Según la forma de la superficie pulimentada de los espejos curvos, estos pueden ser esféricos, parabólicos, etc
Los espejos esféricos tienen forma de casquete (una parte de una esfera hueca):
Pueden ser cóncavos o convexos.
El espejo es cóncavo si la parte plateada (pulimentada) es la interior del casquete y es convexo si la parte plateada (pulimentada) es la  exterior del casquete.

Formación de imágenes en un espejo plano
La formación de imágenes en los espejos son una consecuencia de la reflexión de los rayos luminosos en la superficie del espejo. La óptica geométrica explica este familiar fenómeno suponiendo que los rayos luminosos cambian de dirección al llegar al espejo siguiendo las leyes de la reflexión.
Suponiendo un punto P, que emite o refleja la luz, y que está situado frente a un espejo, el punto simétrico respecto al espejo es el punto P'.










REFRACCIÓN

Es el cambio de dirección que experimenta un rayo de luz cuando pasa de un medio transparente a otro también transparente. Este cambio de dirección está originado por la distinta velocidad de la luz en cada medio.



ÁNGULO DE INCIDENCIA Y ÁNGULO DE REFRACCIÓN
Se llama ángulo de incidencia -i-  el formado por el rayo incidente y la normal. La normal es una recta imaginaria perpendicular a la superficie de separación de los dos medios en el punto de contacto del rayo.
El ángulo de refracción -r'-  es el formado por el rayo refractado y la normal.

ÍNDICE DE REFRACCIÓN
Se llama índice de refracción absoluto "n" de un medio transparente al cociente entre la velocidad de la luz en el vacío ,"c",  y la velocidad que tiene la luz en ese medio, "v". El valor de "n" es siempre adimensional y mayor que la unidad, es una constante característica de cada medio: n = c/v.
Se puede establecer una relación entre los índices de los dos medios ny n1. En el applet de esta práctica se manejan estas relaciones:

SubstanciasAireAguaPlexiglásDiamante
Índices de refracción1.000291.3331.512.417



                                                                LENTES



¿Qué son?
Una lente es un sistema óptico centrado formado por dos dioptrios de los cuales uno, por lo menos, acostumbra a ser esférico, y dos medios externos que limitan la lente y tienen el mismo índice de refracción.
Si el grosor de la lente es despreciable, comparándolo con los radios de curvatura de las caras que la forman, recibe el nombre de lente delgada.
Desde el punto de vista óptico cada cara es un dioptrio.


Tipos
Según su forma las lentes delgadas pueden ser convergentes divergentes.
Convergentes: son más gruesas en el centro que en los extremos. Se representan esquemáticamente con una línea con dos puntas de flecha en los extremos.


Según el valor de los radios de las caras pueden ser: biconvexas (1), plano convexas (2) y menisco convergente (3).





Divergentes: Son más delgadas en la parte central que en los extremos. Se representan esquemáticamente por una línea recta acabada en dos puntas de flecha invertidas.
Según el valor de los radios de las caras (que son dioptrios) pueden ser: bicóncavas (4), plano cóncavas (5) y menisco divergente (6).
En esta foto vemos dos lentes de las que existen en los laboratorios de óptica.


CORRIENTE ELÉCTRICA

La corriente Elécrica  es el flujo de carga por unidad de tiempo que recorre un material. Se debe al movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. 
Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al polo positivo de la fuente de suministro de fuerza electromotriz (FEM).


En un circuito eléctrico cerrado la.corriente circula siempre del polo.negativo al polo positivo de la.fuente de fuerza electromotriz.(FEM),

MALLAS

Ley de Mallas:El principio de conservación de la energía se aplica a circuitos a través de la ley de mallas. Conecte un circuito serie de tres resistores y verifique que la suma de voltajes (medido en cada uno de ellos) coincide con el voltaje en los terminales (bornes) de la fuente.La suma algebraica de todas las diferencias de potencial a lo largo de un recorrido cerrado (malla) en el circuito, es nula. Es decir: sumatoria delta V = 0 para un recorrido cerrado.Este teorema es simplemente una manera particular de enunciar el Principio de Conservación de la Energía en circuitos eléctricos, lo que se explica a partir de que la diferencia de potencial se define en función de trabajo y energía.

NODOS

Ley de Nodos:El principio de conservación de la carga eléctrica se expresa a través de la ley de nodos. Un nodo es un punto donde el circuito se divide en ramas aunque puede considerarse un nodo cualquier punto al que llegue al menos un conductor y del que salga al menos otro.En cualquier nodo, la suma algebraica de las corrientes debe ser cero. Este teorema, que también se conoce como primera ley de Kirchhoff, es simplemente el enunciado del principio de conservación de la carga. (i 1 - i 2 - i 3 = 0) . 
CURVAS CARACTERISTÍ CAS DE ELEMENTOS PASIVOS..La curva característica de un elemento viene dada por la función intensidad = f(tensión) para el mismo. Para obtener la misma se somete el elemento a diversos valores de tensión registrándose las intensidades que lo traviesan, construyendo el cuadro de valores V/Icorrespondiente que luego graficamos.
 Se denomina resistor o resistencia al componente electrónico diseñado para introducir una resistencia eléctrica determinada entre dos puntos de un circuito.En otros casos, como en las planchas, calentadores, etc., las resistencias se emplean para producir calor aprovechando el efecto Joule.Entre los técnicos es frecuente utilizar el término resistor por ser más preciso que resistencia.
 Ley De Ohm La intensidad de la corriente eléctrica que pasa por un conductor en un circuito es directamente proporcional a la diferencia de potencial aplicado a sus extremos e inversamente proporcional a la resistencia del conductor. Matemáticamente esta ley se expresa de la siguiente manera: I=V/R por lo tanto V=IR donde: V: es la diferencia de potencial aplicado a los extremos del conductor (en volts V) R: es la resistencia del conductor en Homs I:es la intensidad de la corriente que circula por el conductor (en amperes A) Al despejar la resistencia de la expresión matemática de la ley de Ohm tenemos que: R=V/I Con base en la ley de Ohm se define a la unidad de resistencia eléctrica de la siguiente manera: la resistencia de un conductor es de 1 ohm si existe una corriente de un ampere cuando se mantiene una diferencia de potencial de un Volt a través de la resistencia: R(en homs)= V (en volts)/I(en amperes) es decir 1ohm=V/A Cabe señalar que la ley de hom presenta algunas limitaciones como son: 1.- Se puede aplicar a los metales pero no al carbón o a los materiales utilizados en los transistores.2.- Al utilizarse esta ley debe recordarse que la resistencia cambia con la temperatura, pues todos los materiales se calientan por el paso de corriente.3.- Algunas aleaciones conducen mejor las cargas en una dirección que otra. 











CORRIENTE ALTERNA


Se denomina corriente alterna a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. 
La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinosoidal , puesto que se consigue una transmisión más eficiente de la energía. 
Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna.
 En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.




CIRCUITO RL

Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene autoinductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la autoinductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.

Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contraelectromotriz.